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I. MOTIVATION

Decision-making is a critical skill for animals and au-
tonomous robots alike. Whether you are a rabbit or a driverless
car, you constantly need to make appropriate decisions. This
work stresses the importance of taking into account habit for-
mation in decision-making and in goal-directed behaviors such
as intrinsic motivation, especially as it pertains to sensorimotor
learning.

In computational systems, reinforcement learning (RL) (Sut-
ton, 1998) has been a popular framework to describe and ex-
plore the issues of decision-making. Interestingly, although the
RL framework was not intended to provide a plausible model
of reinforcement learning in animals, RL, and in particular
temporal difference (TD), has been a popular choice to model
and explain observed experimental data in neuroscience (Pan,
2005); this is in great part due to TD providing a temporal
model for the Rescorla and Wagner learning rule (Rescorla,
Wagner, et al., 1972). The reward prediction error of TD has
been proposed to model the firing activity of dopaminergic
neurons located in the basal ganglia, a set of neural structures
located in the center of the brain that are critically involved
in learning to make appropriate decisions.

An important aspect of decision-making is habit formation.
Indeed, an action that has been learned through reinforcement
towards a specific rewarded outcome (action-outcome, A-O)
can progressively become a habit, especially if elicited by a
clear stimulus. In that case a previously goal-directed behav-
ior becomes an automatic response to a stimulus (stimulus-
response, S-R), characterized by a relative insensitivity to
reward devaluation (Yin and Knowlton, 2006).

Here, we do not use the reinforcement/devaluation protocol.
Rather, we put forward the hypothesis that habit formation can
lead to suboptimal choices even when rewards remain fixed.
For this we use a paradigm commonly used in psychology,
behavioral neuroscience, and computational science: a two-
armed bandit task. This task is used on a computational
model of decision and on a real-world setup with non-human
primates.

II. COMPUTATIONAL MODEL

Our lab previously created a neurocomputational model of
the basal ganglia (Topalidou et al., 2016, Figure 1). The model
is implemented as a recurrent neural network with rate-coded
neurons reproducing the main structures and interactions found
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Fig. 1. A schematic representation of the computational model. STN: sub-
thalamic nucleus, GPi/GPe: globus palidus internal/external. For a complete
description of the model, see Topalidou et al., 2016. The code source for
reproducing results is available at http://dx.doi.org/10.6084/m9.figshare.5203993.

in the basal ganglia. The network is organized as three inter-
active loops: motor, associative and cognitive. The cognitive
loop perceives the visual stimuli, and the motor loop generates
the action that pushes the chosen button, and the associative
loop encodes the mapping between stimuli and buttons.

Out of all synaptic connections in the network, only two
are plastic. The connection between the cognitive cortex and
the cognitive striatum changes its weights according to a
reinforcement learning rule, and the one from the cognitive
to the associative cortex implements Hebbian learning. While
the former is affected by rewards, the latter is not.

We subjected this model to a two-armed bandit task where
two visual stimuli, A and B, are presented. Stimuli are
rewarded probabilistically, with probability rA and 1 − rA
respectively: if rA = 0.8, A is rewarded 8 out of 10 times,
while B only 2 out 10. For the first 20 trials however, we
forced the model to choose a stimulus by presenting only one
at a time. During this period, A and B are presented with a
ratio PA and 1−PA respectively. For instance, with PA = 0.3,
A and B are presented alone, as forced choices, 6 and 14 times
respectively in a random order during the first 20 trials. During
the rest of the trials, both A and B are presented to the model,

http://dx.doi.org/10.6084/m9.figshare.5203993
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Fig. 2. In the model, choices can go against rewards, if the stimulus with the
lower has been sufficiently reinforced enough through Hebbian learning. In
this instance, rA = 0.75 and PA = 0.2. The figure shows averages over 100
runs. Despite A being much more rewarded than B, B is initially preferred
when free choices are allowed. The choice then reach a balanced equilibrium:
around 50 runs have switched to always choosing A (RL was stronger), the
other to always choosing B (Hebbian learning was stronger). The behavior
of the model is heavily affected by the relative weights of Hebbian learning
and RL, as well as the initial RL value for the two stimuli. The parameters
were fitted on experimental data from previous monkey experiments.

which is able to choose freely between them. Our hypothesis
is that if we force the choice of the less rewarded stimulus B
sufficiently more often than A, the model will choose B more
than A when able to choose freely.

As shown in Figure 2, the model is indeed able to display
such a behavior. The interpretation is that during the forced
choice, the Hebbian connection is strongly reinforced towards
B. In other words, the model habituates to choosing B: the
more a choice is made, the easier it is to make in the future.
Under some circumstances (see Figure 3), it allows Hebbian
learning to prevail over reinforcement learning. For instance, if
B is chosen all the time over a time period, A is not reinforced
through RL anymore while Hebbian influence favoring B
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Fig. 3. The frontier between choosing A more than B is not independent of
PA. In this diagram, the area of a square represents the difference between
the number of times A versus B has been chosen in the first ten trials of
free choices (each time, averaged over 100 repetitions of the task). If the
difference is positive (A chosen more than B), the square is orange, else,
blue. In a rational agent, the frontier would be horizontal, at rA = 0.5. Here,
we can see that PA can be set to induce suboptimal choices.
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Fig. 4. Three female macaque monkeys were trained on a button/screen
setup. The buttons correspond to position on the screen where visual stimuli
appear, as shown. The monkeys are sitting in chairs, at 50 cm from the screen.
Trials are initiated by holding the central button. After a delay (750-1250 ms),
stimuli appear on the screen in two randomly chosen positions out of four.
The choice is made by pushing the corresponding button. Reward is water.

grows, making choosing A even less likely in the future. In-
terestingly, whereas novelty-based intrinsic motivation models
predict that (moderately) novel stimuli are more attractive, our
model explores an opposite tendency: the decision process
favors familiarity of choice.

III. BEHAVIORAL EXPERIMENTS

To test the predictions of the model, we are applying the
two-armed bandit protocol to non-human primates (macaca
mulata, see Figure 4)1. Contrary to the model, during the
forced choice period, A and B do not appear alone. They
appear with a neutral stimulus as an alternative; the neutral
stimulus is never rewarded. Additionally, the forced choice
period last 50 trials. The experiments are ongoing.
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